JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 2, S0-78 (1985)

PIPE*
(Pipelined Image-Processing Engine)

ERNEST W. KENT, MICHAEL O. SHNEIER, AND RONALD LUMIA

Industrial Systems Division, National Bureau of Standards,
Washington, D.C. 20234

The Sensory-Interactive Robotics Group of the National Bureau of Standards’
Industrial Systems Division is designing and constructing an experimental multistage
pipelined image-processing device for research in machine vision. The device can
acquire images from a variety of sources, such as analog or digital television cameras,
ranging devices, and conformal mapping arrays. It can process sequences of images
in real time, through a serial pipeline of local operations, under the control of an
external device. Its output can be presented to such devices as monitors, robot vision
systems, iconic-to-symbolic mapping devices, and image-processing computers. In
addition to a forward flow of images through successive stages of operations in the
pipeline, other paths between the stages of the device permit recursive operations
within a single stage, and feedback of the results of operations from a stage to the
preceding stage. This architecture facilitates a variety of relaxation operations,
interactions of images over time, and other interesting functions. Numerous
operations are supported, including arithmetic and Boolean neighborhood operations
on images within each stage, and between-stage operations on each pixel such as
thresholding, Boolean and arithmetic operations, functional mappings, and a variety
of functions for combining pixel data converging via the multiple image paths. The
device can also be used to implement several alternative processing modes. Some
operate within each stage, for example, to contro} edge effects or to implement
“MIMD"” operations specific to regions of interest defined by the host device. Others
operate between stages, for example, to support variable-resolution pyramids.

1. INTRODUCTION

An image to be processed may be represented in a variety of ways. The
most “natural” of these is to represent one or more intrinsic properties of the
image (such as surface brightness, color, or range) in an ordered array whose
cells correspond to the spatial locations of the image points. Such a map is
often called an “iconic” image. An example of an iconic image is the repre-
sentation of images on a television screen. An alternative image representa-

*The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the
copyright covering this paper, for governmental purposes, is acknowledged.
50

NAT4Y T8 ¢ NN

PIPELINED IMAGE-PROCESSING ENGINE 51

tion, often called a “symbolic” image, results when features of the image are
represented by symbols which are stored in a linked list or similar data
structure. A chain-coded representation of edges is an example of a symbolic
representation.

Since an iconic image is spatially indexed, the whole image, or whole
subregions of the image, must usually be processed during each operation,
and massively parallel processing is required for real-time operation. Serial
computer image-processing techniques typically attempt to reduce the image
to a symbolic representation as rapidly as possible, to enhance the efficiency
of serial processing. While this data compression brings many image-
processing operations within the capabilities of ordinary serial computers, it
makes many other operations more difficult, such as subtracting one image
from another.

Parallel processors are ideally suited to the early stages of image pro-
cessing, where local spatial and temporal features have not yet been discov-
ered. They lend themselves to processing strategies based on multiresolution
(pyramid) representations, and facilitate relaxation techniques for which a
spatially ordered representation is most natural and efficient. Unfortunately,
true multistage parallel processing is prohibitively expensive for images of
useful size. The device described in this paper represents an attempt to
gchieve most of the advantages of a true multistage, fully parallel, iconic
image processor through the use of very fast special-purpose hardware. The
modular design of the hardware allows flexibility not only in the algorithms,
but also in the organization of the device itself.

The Pipelined Image-Processing Engine (PIPE) is designed for use as a
preprocessor to perform local neighborhood operations on iconic images. The
processed images are intended for a host machine which will perform global
operations and/or image understanding procedures, such as labeling, on the
.result. Thus, PIPE itself accepts iconic data images, and typically produces
1cqnic images whose pixel values are Boolean vectors describing local prop-
erties of the pixel neighborhood. PIPE relieves the host of costly low-level
local processing which must be performed over the entire image space. An
auxiliary device (ISMAP) is also being constructed which will interface PIPE
to a host by mapping the Boolean vector image from PIPE into histograms and
other types of ordered list structures in the address space of the host.

PIPE consists of a sequence of identical processors (Fig. 1), sandwiched
between a special input processor and a special output processor. The input
processor accepts an image from any device that encodes two-dimensional
images, such as a gray-scale camera, a range sensor, or other special hard-
ware. It serves as a buffer between the rest of the processors and the outside
world. Each successive processing stage receives image data in an identical
format, operates on them, and passes them on to the next stage for further
processing. This sequence is repeated every television field-time. When an
Image emerges at the far end of the sequence, it is processed by the special

52 KENT, SHNEIER, AND LUMIA

Grey-Scale t—
image Serial
Acquisition Compuler
Hardware
Log- Iconic
— —— Symbolic | fm——
.P°“' Pipe: Iconic to Foature.
Trane- image Procassor Trans- P Space
torm torm T
Range- —— D —
m:‘.:: Robot
Acquisition Vision
Herdware Systems

F1G. 1. The PIPE processor and its relations to other elements of the NBS image-processing
configuration.

output processor, and presented to some other device, such as a robot vision
system or a serial computer.

The processors between the input and output stages are all identical and
interchangeable, but can each perform different operations on the image
sequences that they encounter. Usually, each processor receives three input
images and transmits three output images. The input images arrive from the
processing stage immediately behind each stage, from the processing stage
immediately ahead, and -from a result of the preceding operation just per-
formed by the processor itself. Similarly, the resuits of processing its current
image are transmitted by each stage to the next processing stage in the
sequence, to the immediately preceding processing stage, and recursively
back into the processor itself. These three outputs are not necessarily identi-
cal, and each may furnish part or all of the inputs to the other processors for
the subsequent step in processing. The three inputs may be weighted and
combined in each processor, in any fashion, before they are processed. In
addition to the usual input and output paths, four “wildcard” paths are pro-
vided for both input and output. These paths are common to all stages, so that
only one stage can write to a particular wildcard path at a time. The wildcard
paths allow image frames to be moved arbitrarily between stages, instead of
having to step through from stage to stage. There are no restrictions on the
number of destinations for a frame output to a wildcard path.

Two main kinds of processing may be carried out in each processing stage.
The first involves simple pointwise arithmetic or Boolean operations, on a
pixel-by-pixel basis. The second is a neighborhood operation, which is per-
formed in a pipelined fashion. (Notice that PIPE contains two kinds of
pipelines. The first is a pipeline of images that proceed from processor to

PIPELINED IMAGE-PROCESSING ENGINE 53

processor, while the second is a pipeline of neighborhoods within each pro-
cessor.)

There are numerous reasons for requiring the three input and output paths
from each processor. It is clear that the forward path allows a chain of
operations to be performed, giving rise in real time to a transformed image
(with a constant delay). Similarly, the recursive path allows a pipeline of
arbitrary length to be simulated by each stage, and also facilitates the use of
algorithms that perform many iterations before converging to a desired result
(e.g., relaxation algorithms, or the simulation of large neighborhood oper-
ators by successive applications of smaller neighborhood operators). The path
to the preceding processor allows operations using temporal as well as spatial
neighborhoods to be performed. It also allows information inserted at the
output stage by the host to participate in the processing directly. This, for
example, allows expectations or image models to be used to guide the pro-
cessing at all levels, on a pixel-by-pixel basis.

The architecture of the device is described in the next section. Later
sections describe ways of using PIPE for various image-processing oper-
ations, and expand on the reasons for the various image pathways and the
processing capabilities built into each processing stage. Interactions with the
outside world are also discussed.

2. ARCHITECTURE

The organization of the image-processing section of PIPE, excluding the
input and output processors, is shown in Fig. 2. PIPE is composed of a
variable number of identical, modular, image-processing stages. Every stage

Processing Stages

Pinel-by-Pixel
Within Stage
Rucursion

AN

Forward Transtormation
- - omtiind (image Fiow)

Pixel-by-Pixat
L.] __J ol Retrograde Transtormation
(Feedback Flow)

e Slage-by Stage
Processing Contsot

Stage Control Units

FiG. 2. Major connections between processing stages in PIPE.

54 KENT, SHNEIER, AND LUMIA

contains two field buffers, each of which holds a processed version of the
image from a single field of data. During each field-time, each stage operates
on one member of a set of consecutive image fields. The stages contain fast
special-purpose logic that processes the contents of the buffers and carries out
interstage interactions in a single field-time (16.67 msec). Each stage has an
associated stage-control unit that can redefine the process to be performed by
the stage and change its parameters during the interfield interval. The stages
are connected by three distinct data paths, which are shown in Fig. 2.

PIPE’s main processing tool is a neighborhood operator. This may com-
prise either an arithmetic convolution operator or a set of arbitrary Boolean
operators. Additional operations are also possible; they are discussed in more
detail below. The neighborhood operations (either arithmetic or Boolean) are
performed on a neighborhood of each pixel in a stage buffer. Two such
operations may be performed independently in a single field-time, on the
neighborhood of every pixel in the field. The output of these operators can be
sent to any of the paths out of the stage.

The image resulting from applying one of these neighborhood operators is
carried forward into the subsequent stage (perhaps after undergoing other
associated transformations). Similar processing occurs in all stages simulta-
neously, so that the system forms an image pipeline into which new images
are accepted at field rate. This image-flow processing follows the path indi-
cated in Fig. 2 as “pixel-by-pixel forward transformation.” At every pro-
cessing stage, different processes may be applied to the image. Interactions
between stages, detailed below, extend the processing to the ‘“temporal
neighborhood” of the pixel, permitting time-domain operations on the scene.
These are useful, for example, in the analysis of motion.

A second “backward” data flow path is supported by each stage. This path,
indicated in Fig. 2 as “pixel-by-pixel retrograde transformation feedback
flow,” brings the output of one of the neighborhood operators of each stage
back to combine with the image currently entering the preceding stage. The
source of the data for this second, “retrograde” pathway may be the same as
for the forward transformation, or may be the second neighborhood operator
applied to each pixel neighborhood at the same time that the forward trans-
formation operator is applied. Thus, the retrograde transformation may be
independent of the forward transformation, or be identical with it. The results
of the retrograde operation from one stage are carried into the preceding
stage, permitting interaction forward in time (i.c., interaction with sub-
sequent images; notice that the forward direction with respect to the pipeline
stages corresponds to images that arrived earlier in time). This permits feed-
back loops to be formed in the image-flow processing.

Neighborhood operators can be used for a wide variety of image-processing
tasks (e.g., averaging and noise reduction operations, edge, line, and point
labeling operators, region growing, region shrinking, and finding (non-)
minima and (non-) maxima). Some of these functions permit'or require

PIPELINED IMAGE-PROCESSING ENGINE 55

repetitive recursive operations. That is, they require that the image resulting
from one application of the operator be the input for a subsequent application
of the same operator. This implies that the stage’s field buffer must be able
to be loaded from the output of its own forward or backward transformation
operators. The alternative would be to accomplish recursive operations by
cascading the image through multiple identical operations in sequential
stages, which could require an arbitrary number of stages. In Fig. 2 the
recursive path provided by PIPE is labeled “pixel-by-pixel within-stage recur-
sion.” It is shown here originating from the forward pathway, but it may
optionally arise from the backward pathway.

The data actually stored in each stage are generated by logic that operates
on, and performs various combinations of, the inputs from all three incoming
pathways. Feedback values and recursion values may be combined with the
ascending image value in any proportion, summed or differenced with it (with
or without constant offsets), or combined by any Boolean operation. A
schematic representation of the relationships between the forward and retro-
grade transformation operators and the spatial neighborhood of a single pixel
is shown in Fig. 3. In this and other figures, the recursive pathway is shown
originating from the forward transform unless otherwise specified, but origin
from the retrograde transform is an option in all cases.

If the preceding and succeeding fields are considered to contain future and
past instances of a field, respectively (as is true in a dynamic image), then

8

Recursive image
Flow

Forward
Arbitrary
N Operator Function
To inter-Stage Forward

Frame image Flow Logic
Buller

Retrograde Arbitrary N

Function

Ovpou tor

To inter-Stage Feadback Log.c
tor Backward Image Flow

FiG. 3. Generation of image-flow paths from simultaneous application of independent neigh-
borhood operators.

56 KENT, SHNEIER, AND LUMIA

Logic

o
L.
P
r %o
[
Locopmad
-
-]
x
+
M

Recussive Path
Arbilrary Boolean
andios Arithmaetic
-9 Functions
o
| oPF 4
i N
1 1 To
L._4 Forwara Path Siage
,ﬂ Arbitrary Boolean Net
- andior Arithmatic
HE Functions
] [}
t 0:! n Relrograde Path
| 1 Arbiirary Boolean
1 [} andioe Ardithmetic
| S Functions
r==-q
1]
] '
| oPB
A : N+2 H
]
Pl

r-
]
t

FIG. 4. The interstage combining logic.

forward transformation corresponds to a path from the future, recursion to a
path from the present, and retrograde transformation to one from the past. The
weighted sum of the three paths may be set up as a convolution operation on
the temporal neighborhood of a pixel. This may occur at the same time as the
convolution operation is being performed on its contemporary spatial neigh-
borhood (i.e., eight spatial neighbors and two temporal neighbors). Com-
bined uses of the retrograde pathway to implement both feedback loops and
temporal convolutions can also be envisioned; their utility is a matter for
exploration.

Figure 4 shows some details of the interstage combining logic to clarify the
interaction of the pathways in the temporal domain. The outputs of the
forward neighborhood operations (OPF) and the retrograde operators (OPB)
are shown for stages N, N + 1, and N + 2, together with the combining logic
linking them. At every PIPE stage, data from any of these pathways may be
subjected to a comparison operation (e.g., thresholding) to transform arith-
metic data to Boolean data. The arbitrary Boolean and/or arithmetic functions
shown in this figure represent a versatile set of possible operations (including
arithmetic-to-Boolean conversion) that may be applied to each data stream
prior to combination by table lookup.

It is helpful in understanding the functions of these processing pathways to
consider each in isolation first. If only the forward transformation path is
operative (i.e., the weights for the retrograde and recursion operators are set
to zero), we have a simple image pipeline processor which can sequentially
apply a variety of neighborhood operators to the series of images flowing
through it. It can perform either arithmetic or Boolean neighborhood oper-
ations and, by thresholding, convert an arithmetic image into a Boolean
image. For example, it might be used to smooth an arithmetic gray-scale
image, apply edge detection operators to it, threshold the “edginess” value to

PIPELINED IMAGE-PROCESSING ENGINE 57

form a binary edge image, and then apply Boolean neighborhood operations
to find features in the edges. The operation types and parametric values for
these operations would be set individually for each stage by the stage control
units, which in turn would be instructed (for example, from the host) via the
input marked “stage-by-stage processing control” in Fig. 2.

A second single-path case results if both the forward and retrograde paths’
combining functions are zero. Assume that images had previously been
loaded into the processing stages. The recursion path would then cause the
image field in each stage to pass through the forward or backward trans-
formation operation recursively, while the images “marched in place.” A
variety of relaxation operations can be implemented in this way.

For the final single-path case, consider what happens when the weights
assigned to the forward and recursive paths are zero, leaving only the retro-
grade pathway active. When the set of such paths is considered in isolation,
it becomes clear that it forms a processing chain that is a retrograde counter-
part of the forward pipeline. It would, in fact be possible to select appropriate
retrograde transformations, insert fields of data at the back of the device,
process them through to the front, and get the same result as running the
system in the normal direction. The purpose of this is not to provide a
bidirectional image processor, but to permit input (at the “output” end of
the device) of synthesized images. Such images influence the processing of
the normally flowing images by direct interaction, and correspond to
“expectancies,” “models,” “hypotheses,” or “attention functions.”

The retrograde images are not only able to affect processing of the forward
images, but are affected themselves by interaction with them. (The effects
that the two image sequences exert on each other may be different because
the neighborhood operators on the forward and backward paths are indepen-
dent.) Retrograde images will usually be generated by knowledge-based
processes in higher-level components of the host system. They may initially
appear in Boolean form, but, as shown in Fig. 5, provision is made for all four
possible combinations of arithmetic and Boolean inputs and outputs in the
combining logic between stages. This permits a descending Boolean image to
be instantiated into arithmetic image values by interaction with the ascending
arithmetic image. This occurs in the same stage in which the ascending
arithmetic image representation is thresholded to become a Boolean image.
Both the ascending data image and the descending “hypothesis” image can
pass across this interface. A major function of PIPE will be to explore the
effectiveness of various approaches to hypothesis-guided iconic image pro-
cessing.

Boolean information can be processed in an interesting way by combining
the outputs of the forward operator from the previous stage and the recursive
input from the current stage. Consider the case of a single stage treated in this
fashion for eight field-times, using “SHIFT then OR” as the combining
operation. If the incoming images from the previous stage have Boolean

58 KENT, SHNEIER, AND LUMIA

Asithmelic I Boolean o
image Data image Oats

RAscursion Path

Butter Buller Butter Butier
A N-1 A N [N+t [N+2
ombif
imagea __A CT::M 5] Joer |2, CT;'Q“" Fq oer [AL} cmm 121 [oeel®®© ,_,o::"" 120 [oer
Path N~1 |store [OPS N Store |OPB = Nt Stors |OPS N+2 | Store {OPB

Feedback Path

Arithmetic I Boolesn
Feedback Dats Feodback Dats

FIG. 5. Interactions between arithmetic and Boolean images.

values resulting from successive independent operations and comparisons,
such a stage will accumulate images from the eight preceding Boolean oper-
ations into an image composed of 8-bit Boolean vectors. Subsequent Boolean
neighborhood operations may apply independent operators to each bit plane
of a neighborhood of such vectors.

PIPE is not a simple parallel image pipeline. Each stage in the pipeline of
images contains its own, ‘internal, pipeline which is used to perform the
neighborhood operations. That is, the operations are not applied to every
pixel neighborhood of each stage simultaneously, but are performed se-
quentially, raster scan fashion, over the stage within one field-time. Of
course, the stages all operate in parallel, so that the whole pipeline of images
is processed in a single field-time. The sequential nature of the within-stage
processing, together with the existence of the recursive data path, could pose
problems in performing the neighborhood computations. If each neigh-
borhood operation were to be computed using values taken directly from the
image, then those points above and to the left of the central pixel in the
neighborhood would already have been processed, and perhaps altered, by
previous pipelined operations. To avoid such problems, the pixel neigh-
borhoods being processed in each field are read/write shifted so that the
incoming pixels from the pipeline, which are continuously updating a field
belonging to a later image epoch, do not appear in the neighborhoods of pixels
being processed in the current image epoch. Between-field read/write address
differences simulate time delays to compensate for this staggering and thus
ensure that homologous pixels from each field are received by the combining
logic. The manner in which this staggering is related to the interactions of the

PIPELINED IMAGE-PROCESSING ENGINE 59

= Forward Neighbornood Operator
= Relrogtade Naighoorhood Opeistor

= Forward Path Funchions

= Recursion Path Functions

= Feeddack Path Funclions

= RecursioniF eedback Combining LOGIC

B R eedback C. Logic

Ommopoe»

FiG. 6. Staggering of read/write operations between stages.

various pathways is shown in Fig. 6. The required parameters of the simulated
delays are illustrated in the figure as actual delay lines for clarity, although
there are no such physical delay elements in the machine.

PIPE has a variety of features and operating modes in addition to the
neighborhood operations discussed above. Its input stage has the ability to fill
one field buffer with the difference between the contents of either buffer and
the incoming image. In this fashion, it can force PIPE to process only those
portions of the image which change from field to field.

Another option allows PIPE to accept definitions of “regions of interest” in
an image, and to cause any stage to apply complete aliernative operation sets
within each of its regions of interest. Regions of interest for an image buffer
are specified via a bit map resident in the other image buffer of a stage. In this
fashion PIPE can act as an MIMD machine, in that different operations can
be performed over different portions of the data stream on a pixel-by-pixel
basis. This feature may be used to generate globally nonlinear image-
processing operations, as, for example, in preserving edges while smoothing
non-edge portions of an image. Up to 256 alternative operation sets are
specifiable in principle by the bit-mapping procedure. The actual number
available will depend on the amount of memory attached to each stage. In the
prototype device, sixteen will be available. The nature of the available alter-
native operation sets, like all other aspects of stage operations, may be
changed between fields.

A further mode of operation allows multiresolution image processing. For
example, PIPE can use its forward image-processing path to reduce an image

60 KENT, SHNEIER, AND LUMIA

into successive half-resolution representations, and its retrograde path to
construct successive double-resolution representations, thus implementing a
form of multiresolution pyramid. Processing within any level of such a
pyramid can be accomplished through use of the recursive pathway, while
interactions between levels of the pyramid are accomplished through the
forward and retrograde image paths. In interlevel interactions, the mapping
of pixels into higher- or lower-resolution images occurs automatically. Mul-
tiresolution image processing using PIPE is discussed further below. Another
useful feature of PIPE is the provision of two “wildcard” buses, which allow
images to be transferred from a stage to any or all other stages in a single
field-time. These buses allow quick access to, and dissemination of, inter-
mediate results. They also make it possible to connect the stages into a
ringlike structure, or to bring synthetic images from the host to any stage.

3. FuncTtioNAL DETAILS OF PIPE STAGES

3.1. Input Stage

A special input stage is used to capture images from input devices. This
allows PIPE to accept digital or analog signals from any device using standard
RS-170 ielevision signals and timing. Analog signals are digitized by an 8-bit
real-time digitizer. The input stage is capable of acquiring a digitized image
of 256 X 240 pixels while remaining synchronized with RS-170 signals.
Alternatively, it can capture 256 X 256-pixel images from non-RS-170 sig-
nals while internally employing nonstandard pixel rates. It can continually
capture such images at standard television field rates, and place them in either
of the two field buffers contained in the input stage. While storing an image
into one of these buffers the input stage can also simultaneously store an
image, such as a difference image, formed by an ALU operation between the
incoming image and a previously captured image, into either buffer. The
contents of either of the buffers in the input stage can be sent to the first of
the processing stages, while the next image is being acquired.

PIPE accepts 8-bit input data, and this precision is maintained throughout
the machine. Intermediate arithmetic operations within subsequent stages are
carried to sufficient precision to ensure no loss of accuracy when the result is
rounded to 8 bits for transmission to subsequent stages. The data may be
treated as either unsigned 8-bit numbers, or as signed numbers with the high
bit indicating the sign. Unsigned input data may be processed as such, until
an operation which generates negative values occurs, and treated as signed
data thereafter.

3.2. Processing Stages

The first processing stage is one of a series of modular intermediate pro-
cessing stages (MPS). The MPSs are the “stages™ described in the preceding

PIPELINED IMAGE-PROCESSING ENGINE 61

sections, and are the elements which perform most of PIPE’s processing. All
MPSs are of identical modular construction, and are physically inter-
changeable simply by switching card edge plugs and circuit boards. Thus, any
MPS can operate at any position in the processing chain, and the processing
chain can have a variable length. Eight MPSs are planned for the present
development phase of PIPE.

The Nth MPS accepts three 8-bit 256 X 256-pixel images as input. These
come from the forward output of the (N — 1)st MPS, from the recursive
output of the operation performed on the previous contents of the Nth MPS,
and from the retrograde output of the (N + 1)st MPS. Each data stream may
consist, independently of the other two, of arithmetic or Boolean (8-bit
Boolean vector) data, but a given data stream entering a MPS must be entirely
Boolean or arithmetic within any single image field.

Before generating a final 8-bit image from the three data streams, each
MPS performs comparison, Boolean, and/or arithmetic operations on each of
them independently and simultaneously, according to the type of data present.
If an input stream contains arithmetic data, either comparison or arithmetic
operations are possible by table lookup. The comparison (conversion) oper-
ation may thus be a multiple-window comparison, which converts an arith-
metic pixel to a Boolean vector, with the bits of the Boolean vector indepen-
dently specifiable. The arithmetic operation can consist of any function of a
single argument. If an input stream contains Boolean data, the Boolean
operation can perform functions such as 0- to 7-place barrel shift, and apply
AND (NAND), OR (NOR), and EXOR operations to the result.

The resulting three Boolean and/or arithmetic data streams are then com-
bined through independently-programmable full-function ALUs into a single
arithmetic or Boolean data stream. This data stream (or when enabled, a
DMA data stream provided by an external device) is then used to load either
of the two selectable field buffers within the MPS. Alternatively, either or
both buffers can be filled using the wildcard buses. The contents of both of
these field buffers are then available to subsequent operations of the MPS,
External device access to these buffers is also available; an external device
may read from or write into either buffer in a random access manner at
400,000 pixels/sec, with autoindexed addressing supported on command.
The wildcard buses provide streaming access to external devices (including
monitors) at pixel rates.

The hardware that implements those MPS functions subsequent to the field
buffer storage step is physically contained on a separate circuit card to allow
it to be replaced with other special-functional modules, should this be de-
sirable. This circuitry is represented by the area labeled “Section 2” in Fig.
7. In operation, an 8-bit image is first selected by reading the contents of one
of the two field buffers in the MPS. The image is transformed by an arbitrary,
programmable, single-valued mapping function, and the pixels of the re-
sulting image are subjected to two neighborhood operators, of which there are

62 KENT, SHNEIER, AND LUMIA

Sachion 1
of N™" M PS Secton 2

vBUS A

|

! |

H aroiary l :

veuse 1 Function A

|
[
|
[
[
1
|
|

Forwaig Path
From OPF ol

!
Stage N-t | Comparator Neighborhood !
——memeetel Arithmetic Generalor |
Boolean Ops I
b Butier X g |
Bachwaia Path ALy 1
From OPB of bl Bulter ¥ |
StageN « 1 Comparator | OPF to Stage N+ 1
———meget AUIRMOIC NOP 1 T
8colean Ops. Arithmelic 1 Ay |
7™ Funciion 1 1oPBosgen -1
Ettact 1
NOP 1
Control I Boolean I opR
Path Comparator Region ol I
Interest |
Boolean Ops Control | |
| NOP 2 I
Control |
NOP 2 |
| Boolean '

FIG. 7. The internal architecture of a processing stage.

two kinds. The first type of neighborhood operator is an arithmetic con-
volution operation, while the second is a Boolean operation. For either oper-
ator, the neighborhood of operation is (at present) 3 X 3 pixels square, and
the operation is accomplished in 200 nsec. Pixel neighborhoods are generated
by passing the data stream through a three-line buffer.

In the arithmetic case, the convolution operation uses arbitrary positive or
negative 8-bit neighborhood weights, and maintains 12-bit accuracy in its
intermediate results. The final 8-bit arithmetic result entering the buses is
produced by nonbiased rounding, from a 20-bit sum. This ensures that no loss
of precision occurs within a stage due to arithmetic underflow or overflow.
The full 8-bit precision of the input is thus maintained between stages
throughout the machine. In the Boolean case, the neighborhood operation
consists of arbitrary Boolean operations (a sum-of-products AND-OR array
equivalent) between the set of all the pixels of the data neighborhood, and the
set of all corresponding pixels of an arbitrarily specified comparison neigh-
borhood. Any bit of either neighborhood may be independently defined as
true, false (complemented), or “don’t care.” Each of the eight bit-planes
forms an independent set of inputs, subject to independent neighborhood
operations. As a result, eight independent 1-bit results are obtained from a
single pass of the data through the pipeline, yielding an orthogonal 8-bit
Boolean vector as output.

Two neighborhood operators (NOP1 and NOP2) are applied independently
and simultaneously. They operate on the same data stream, using neigh-

PIPELINED IMAGE-PROCESSING ENGINE 63

borhood operations which may be different. Their outputs may be indepen-
dently subjected to a second transformation by either of two programmable
functions. The first of these is a look-up table mapping function. This trans-
formation may be a function of two arguments. If two arguments are used,
one is taken from the homologous pixel of the field buffer which is not the
source of the image being subjected to the neighborhood operators. The
number of bits used from the two arguments must total 12; for example, the
6 most significant bits of each. If only one argument is used, all 8 bits are
available, the remaining bits being interpreted as “don’t care.” The other
function is an ALU with two 8-bit inputs operating on the same sources. The
data stream arising from either of these operations applied to one of NOP! or
NOP2 (a result denoted by OP1 and OP2, respectively) is selected to become
the forward output (OPF) of the MPS, and the data stream arising from the
operation applied to either the same or the other of NOP1 and NOP2 becomes
the backward output (OPB) of the MPS.

A “region-of-interest” operator allows each MPS to switch between the
normal (OPF, OPB) operation set and alternative (OPF’, OPB’) operation sets
on a pixel-by-pixel basis. In this mode, the other image buffer of the stage
contains a map of the operations to be performed on homologous pixels of the
image buffer undergoing operations. Potentially, up to 256 different alterna-
tive operation sets could be specified by the 8-bit contents of each pixel in the
map. In practice, the number of alternative operation sets selectable during
a field processing time will be limited by the amount of memory available
within the stage to store them, which may be enlarged at will. The operation
sets stored in the available memory may be changed arbitrarily between
fields. This allows earlier image operations, such as edge detection, to guide
later processing.

PIPE allows the construction of multiresolution, “pyramid,” sequences of
images. Pyramids have been found useful in a large number of image-
processing applications. They have an added utility in a strictly local pro-
cessor like PIPE because they allow information from spatially distant regions
to be made local.

The basic operations available in PIPE for constructing image pyramids are
sampling and pixel doubling. Sampling is used to reduce the resolution of an
image, while doubling is used to increase the size of an image. A further
option allows sampling to occur in staggered pixels in alternate rows, to
generate samples with uniform (square root of two) neighbor distances. An
example is presented below to illustrate the utility of pyramid operations in
conjuction With the other operations in PIPE.

Both the sampling and doubling operations are performed by manipulating
address lines within a stage. The places in the stage at which the operations
are performed are different because of timing considerations. Sampling is
achieved by incrementing the source image addresses twice as fast as the
destination addresses. That is, on each row, the first pixel in the source image

64 KENT, SHNEIER, AND LUMIA

is written to the first pixel in the destination image. The second source pixel
is also written to the first destination pixel, overwriting the previous value.
The address of the destination pixel is then incremented, and the procedure
is repeated. The same process is used to overwrite every other row in the
destination image. The resuit is that the destination image is one-quarter the
size of the source image, and occupies the upper left quadrant of the image
buffer. Each pixel in the destination image is written out four times, to result
in the reduced-size image. This is not wasteful because the source image is
being read at field rates and the new image is created in a single field-time.

Doubling is accomplished by the inverse of the sampling process. That is,
the addresses in the source image are now incremented at half the rate of those
in the destination image. For each row in the source (reduced-resolution)
image, two identical rows are output in the enlarged image. For each pixel
in each row of the input image, two identical pixels are stored in the output
image. This results in an enlarged image that has four times as many pixels
as the input image.

The simple operations of image sampling and pixel doubling are not of
themselves very useful except for a narrow range of applications. Combined
with the other operations in PIPE, however, a much broader class of oper-
ations becomes possible. The sampling process occurs as the image enters a
stage buffer. This means that a number of operations can be performed on the
source image prior to constructing the reduced-resolution version. Of these,
perhaps the most useful is the neighborhood operator, which can be used, for
example, to smooth the image before sampling. By iterating the neigh-
borhood operation prior to sampling, the effects of neighborhoods larger than
3 X 3 can be obtained, allowing, for example, the construction of “Gaussian”
pyramids using the hierarchical discrete correlation procedure of Burt [3].

In the inverse situation, when the image is magnified, the doubling occurs
as the image leaves a stage buffer. Once again, operations can be performed
on the doubled image before it is stored into another stage buffer. In this
situation, however, the 3 X 3 neighborhood is not as valuable as in the
sampling case. This is because the “field of view” of the operator does not
encompass all the neighbors of a pixel (the pixels have been enlargedto2 X 2
blocks). To include all the neighbors, at least two iterations of a neigh-
borhood operation must be applied to the image. This means that expanding
a pyramid may take twice as long as compressing it. (By replacing the 3 x 3
operator with a larger one, this asymmetry can be overcome.)

An important issue in dealing with images of varying sizes is how to
overcome edge effects that arise when the neighborhood operator is applied.
This issue is dealt with in the same manner for all sizes of images. It is the
programmer’s responsibility to ensure that each stage knows the size of the
images in each of its buffers. In principle, it would be possible to make all
border pixels belong to a region of interest. Special neighborhood operators
could then be applied there to overcome the edge effects. PIPE provides as

PIPELINED IMAGE-PROCESSING ENGINE 65

a default solution the replication of border pixels. If a neighborhood has a row
or a column that lies outside the boundaries of the image (either beyond the
image buffer itself or beyond the extent of a low-resolution image), the
nonexistent pixels are replaced by the pixels in the border row or column. For
a 3 X 3 neighborhood, this is equivalent both to reflecting the image and to
repeating the border pixels. This is achieved in the same way as the varying
resolution images are constructed, i.e., by manipulating the address lines of
the buffer.

3.3. Output Stage

The output stage fulfills a role at the end of the processing chain similar to
that of the input stage at its beginning. The final MPS delivers its forward
image output (OPF) to either one of a pair of field buffers in the output stage,
and can simultaneously read from the other buffer of the output stage. The
data read from the output stage are used as the input to the retrograde
(feedback) path of the final MPS. Without interrupting the image processing,
either buffer of the output stage can be read from or written into by an external
device, which is both the consumer of the processed forward data flow and
the supplier of data for the retrograde path.

4. USING PIPE

The hardware of the pipeline may be set up for the task of interest by
inserting the number of stages required by the application. A pipeline consists
of a special input stage, for capturing images; a variable number of stages for
processing the images; and an output stage, for delivering the processed data
to a controlling device. Setting up the pipeline involves adding or removing
standard cards. Except for the input and output stages, these cards are all
interchangeable.

4.1. Stage Control

Once the pipeline has been set up, the individual operations to be carried
out must be chosen, and the host device must load each stage with appropriate
instructions for processing successive fields. Each stage has a stage controller
that is loaded by the host device. Interfaces between the control units and host
devices dre 16-bit input and output ports. Each stage-control unit can com-
pletely reconfigure the operations and operating parameters of its associated
stage on the basis of current or stored instructions from the host device.
Changes are made in the interval between image fields.

The stage-control units store and select multiple alternative configurations
for their stages. The sequencing orders of these configurations are provided

66 KENT, SHNEIER, AND LUMIA

by the host device. Programming PIPE thus consists of specifying to the
control units the operations and operation sequences to be performed by each
stage, and loading the corresponding operators, parameters, and tables into
the stages. In operation, the host device may instruct the stage-control units
to select a stage program, instruct it to branch in the specified sequence of
operations, or permit it to follow the preset sequence of operations (which
may contain branch points on repetition counts). For program development,
the contents of any buffer and the output of any operator in the system can
be displayed on a video monitor, with or without freezing the contents of the
buffer, and the whole processor can be single stepped.

4.2. Program Examples
The following examples make use of a schematic MPS representation
employed as labeled in Fig. 8. The diagram has four distinct sections, which

ap—

|
' b

VBUS A
VBUS B i)] e ———

-
vIY
1 2
2 X v Xy 9
o 00 o 0 0
2 .9 9. 9
[} L]
ALY [81) 4
) S-S D U
oJ VBUS A
j T 7 0—1E veus 8

F1G. 8. A schematic MPS representation for use in program develobmem.

PIPELINED IMAGE-PROCESSING ENGINE 67

are connected by switching networks. At the top of the figure, there is an input
section, and below this are the two image buffers. Next come the neigh-
borhood operations, followed by the output processing. The final switching
network routes the outputs to the wildcard buses and to the three output paths.

The three boxes across the top represent the functions of one argument
(lookup tables) to be applied to the forward, recursive, and backward input
pathways, in that order, from left to right. Whatever functional trans-
formation is employed during a given cycle will be shown in the appropriate
box. Below these is a single box representing the combining function to be
applied during the cycle to the results of applying the above three functions.
The output functional variable here will be represented as A, or B, according
to its destination (in image buffer X or image buffer Y of the stage). The input
variables will be represented as f, r, or b, according to the pathway of origin.

Next there is a crosspoint matrix switching the inputs between the X and
Y image buffers. There are three possible inputs and two possible outputs.
Two of the inputs arise from the wildcard buses (marked VBUSA and
VBUSB), while the third is the output from the combining function. Any of
the inputs can be stored in buffer X at the same time that the same or another
input is stored in buffer Y. The image buffers are represented by the boxes
immediately below the switch. The X buffer is on the left, and the Y buffer
is on the right. As an image is stored into one of the image buffers, it may
undergo a sampling operation, reducing its resolution by a factor of 2.

Below the image buffers is another switch that selects the buffer that will
serve as the input to the neighborhood operators. Only one image buffer can
be used as the source for the neighborhood operator. Notice that the output
from either image buffer can be routed both to the neighborhood operator and
to points further down in the stage (bypassing the neighborhood operator).
The terminals in the switching networks in these cases are marked appropri-
ately, although the lines connecting them to their sources are not shown.
Thus, for example, the output of the X image buffer may be used unchanged
at all points marked X.

As an image is removed from a buffer, it may undergo a pixel-doubling
operation, increasing the size of the image. Note that the output to the
neighborhood operator is the same as that bypassing the operator. If one is to
be expanded, then both must be expanded.

The buffer selected for neighborhood processing passes first through a
lookup table (in the center of the figure) and then through both the neigh-
borhood operators (NOP1 and NOP2). The outputs from these operators are
marked as 1 and 2, respectively.

Following the neighborhood processing, another switching matrix selects
the inputs to the two functions of two arguments. Any of the outputs from the
neighborhood operators or the image buffers can serve as inputs to the func-
tions. The box on the left represents an arithmetic operation, performed on a
pixel-by-pixel basis using an ALU. The box on the right represents the 12-bit

68 KENT, SHNEIER, AND LUMIA

lookup table. The input is 12 bits selected from any two 8-bit inputs in a
manner chosen by the programmer. The selection will be marked on the line
joining the selected terminals of the switch to the lookup table. By choosing
8 bits from one argument and setting the remaining 4 bits to *“don’t care”
values in the table, a function of one input can be implemented.

The final output of the stage is selected from the contents of the X and Y
buffers, from the outputs of both neighborhood operations, and from the
results of both functions of two arguments. The outputs can be routed to the
two wildcard buffers, shown on the right of the figure, and to the backward,
recursive, and forward data paths from the stage, shown left to right at the
bottom of the figure. The only restriction is that two different data streams
cannot be routed to the same output path.

Throughout our programming examples, a blank box will represent an
inactive operation. A simple passthrough operation will be denoted by the
unity function, U. In practice many functions shown in these examples as
unitary or elementary functions will be modified to provide rounding or
scaling operations as required for optimal computation accuracy. Since the
functions are derived from table lookup, these incidental computations may
be inserted automatically from a compiler library, and remain transparent to
the user.

Two examples are presented below using this schematization. In these
examples, data-flow charts are constructed with stages proceeding from left
to right in order of spatial data flow through the machine. That is, in any given
row of the chart, the Nth stage is to the right of the (W — 1)st stage, and to
the left of the (N + 1)st stage.

Data flow in time is represented in the vertical direction. Thus, each row
represents a snapshot of the state of the machine during a given cycle. Each
component of the row represents a single MPS. Each column represents the
evolution of successive states of a single MPS stage over time. It follows that
data must always enter a stage from the row above, and exit to the row below.
Data which are stationary in space (i.e., follow the recursive path only) will
proceed vertically down a column. Data moving forward through successive
stages will flow through the chart diagonally down and to the right, while data
moving backward through successive stages will move diagonally down and
to the left. In general, there will be multiple ways of programming a given
operation in PIPE. Some of these may be space intensive, while others may
be time intensive. Trade-offs may be made between space- and time-intensive
use of PIPE’s resources according to the demands of the task.

4.3. Example I: The Sobel Edge Operator

PIPE can be used for any image-processing task which can be performed
using a 3 X 3 neighborhood convolution window. An example of such an
algorithm is the Sobel edge operator which calculates an approximation of the
gradient G (r, ¢) and its associated direction 6(r, ¢) for each row'(r) and

PIPELINED IMAGE-PROCESSING ENGINE 69

column (c) pixel in the image. Formally,

Lir,c)=1(r,c) * C,
bLir,c) =1(r,0) * C,
G(r,c) = sq(l} + I3)
0(r,) = aan(l, 1))

where
-1 0 1 1 2 1
Ci=-2 0 2 and C,= 0 0 0
-1 0 1 -1 =2 -1

and * denotes the convolution operator.

The program is shown in Fig. 9 using the stage schematic described above.
In order to illustrate how new images are inserted into PIPE, the above
notation needs to be modified slightly. The first input image will be labeled
I, and the next input image will be denoted as /,. All of the intermediate
images required for the algorithm will carry an extra subscript indicating the
source image. This is important because the second input image can be
inserted into PIPE before the first image has been fully processed.

In the first row, the first input image /, enters the Y image buffer of stage
1. The neighborhood operator C, is performed for every neighborhood in I,
and the result, I, , is passed to stage 2 through the forward pathway where it
is stored in the X buffer. Since there is no specification for the Y buffer of
stage 1, the input image remains unchanged in that buffer.

The second row calculates the convolution of the original image with the
C, operator. The result of this operator, I,,, is passed to stage 2 through the
forward pathway where it is stored in the Y buffer. It i also sent through the
recursive pathway of stage 1 and is stored in the Y buffer. This overwrites I,
but this is no loss because the input image is no longer needed.

In the third row, the angle of the gradient is calculated using the function-
of-two-variables lookup table set up for atan (I, I,). This angle is sent out the
forward path. Simultaneously, the I, buffer is sent out the recursive pathway.

The fourth row uses the input lookup tables to square the inputs from the
forward and recursive inputs. These inputs are then added in the ALU and
stored inthe Y buffer. After the square root of this quantity is taken in the final
lookup table, the estimate of the gradient G, is available. Simultaneously, the
next input image I, overwrites the Y buffer of stage 1 and the pipelined
process continues on the next image.

For the first image, four cycles are needed. However, for all subsequent
images, only three cycles are required because the first cycle of the current

70 KENT, SHNEIER, AND LUMIA

RJ [L L] I l
B, - uh) 1
vaysa VBUSA VBUSA vBUSA
vauss —e—s 3 veuse f—e—s ¥ — vpuss = vBUSE
!
v
18t
Row
x Y| cycren
u
NOP(C)
1
2xy xY1
(11] LX)
x v@] x vlgl]
1 s e 2 1 2 1 2 1 PSS 2 .
Lo VBUSA b VBUSA b VBUSA ote VBUSA
1 fe vauss| [* vBUS8 e vBUSH| 1 1 vause
T I T
—1 .
VBUSA .s-...__1 VBUSA 4 VBUSA 4 VBUSA o
VBUSS P vBusSe 4 veuSE T—i—-e] ——I veuse 1
|
°] ana
Row
X ¥ Cycle 2 X
y
NOP(C
1 2
2XY XY
eee oo
@ @] v[:;]
T .". 2 1 2) .‘ * 1 .
ote VBUSA fo- VBUSA oo VBUSA VBUSA
1 >3 VBUSS vBause 1 1. ™ veuss veuss

-
r—-—
-

: —
VBUSA < VBUSA 4 VBUSA 4 vBuSa
vause F—e—s 3 vBUSS 4 13 vnusn-il — veuss F—e—s 3 j
\
x

‘.l
L)
Row
x Cycle 3
>
2] v. Z
ote- VBUSA -4 VBUSA
[2 1o vBUSE 1 -

3
Tz < +Z

FIG. 9. Representation of PIPE operations for the example of a Sobel operator. (A) Input
image /,. (B) Input image /,.

image is processed simultaneously with the fourth cycle of the previous
image.

There may be some question concerning the host computer’s ability to
accept output images at the rate shown in this example (roughly 200 nsec per
pixel). For this example, there is no problem because the Sobel operator
would probably be used as a preprocessing step for further processing in

PIPELINED IMAGE-PROCESSING ENGINE 71
I I | I
8 [J—i RN 1778 ”H‘**Hﬂ
) [8, = ub L_éfliﬁ: .‘]uu, 1 l T l‘ "_‘
Voo === il o ag v [y
‘al am Tt v 12
]
x Y| ——e x x
' etc Cycle 1)
2Ry XY
[TT] o0
t
1 : '- . 2 1 8 1 2 1
1 SEveuse = Vause ~MH 1= vavse

VBUSA o

VBUSA--—.——‘ VBUSA 4
VBUSB VBUSS Pt véusa <

VBUSA 4
o—] veuss —e—e 3

1
rks s

2 1 2
po- VBUSA po- VBUSA

2 1 H
o VBUSA
veuss| ¢ 1 vauss

veuss

1
VBUSA|
vBuSSE

VBUSA 4

VBUSA o vBusa J VBUSA
vBUSB

l |
1
vausa-f M e P e T
X

2
po- VBUSA
j- vBuSA

2 1
fo- VAUSA
j> vBUSH

2 1
fo VBUSA
vause

2 1
pe- VBUSA
vBUSE

F1G. 9—Continued

PIPE. If this were not the case, then the result could be sent to the host
through the DMA channel at a suitably lower rate.

It is interesting to compare the processing capabilities of PIPE with the
sequential techniques used in von Neumann comgputer architectures. To per-
form the Sobel operator for an n X m-pixel image requires 19nm additions,
18nm multiplications, and 3nm lookups. Assuming that each operation takes
the same amount of time and that each image has the RS-170 standard of

72 KENT, SHNEIER, AND LUMIA

256 X 240 pixels, the total number of operations is 40nm = 2.46 Mops. For
PIPE, the amount of time required (after the initial image) is three field-times,
i.e., 0.05 sec. Consequently, a von Neumann type of computer must operate
at 49.2 Mops/sec to keep up with PIPE in this application.

4.4. Example 2: Using Image Pyramids

As an example of pyramid-based processing using PIPE, a means will be
described of computing and applying local thresholds for compact object
detection. The method is a simplified version of the method developed in
[10]. The problem is to find occurrences in an image of compact objects
whose approximate sizes are known. The procedure uses a pyramid of images
to locate and extract such objects. Objects are extracted using a spot detector
applied at the level in the pyramid corresponding most closely to the sizes of
the objects being sought. Thresholds are computed and projected down the
pyramid. They are applied to the original image in the regions corresponding
to the locations of the spots.

The method is to construct a pyramid of images Iy, I,, . . . , I;. Here k is
the level at which single pixels correspond to regions in the original image of
about the right sizes (i.e., within the nearest power of 2). At level k, a spot
detector is applied to the image to locate pixels that contrast strongly with
their background. A local threshold is computed for extracting each object,
and is projected down the pyramid to the bottom level. There it is applied to
the original image, resulting in an image containing only objects of the right
size.

The pyramid is constructed using a 3 X 3 averaging operation A, followed
by sampling (via PIPE’s pyramid mode operation into the forward pathway).
Here, the neighborhood operator used is

1 11
A=1 11
1 11

Following the application of A, each pixel is divided by 8 (or left shifted
three times) to form the average, before the pyramid sampling operation takes
place. The number of successive pyramiding operations applied is a function
of the sizes of the objects being extracted.

When the top level of the pyramid is reached, each pixel corresponds to a
region of roughly the desired size. At this point a spot detector S is applied
to the image. This is a 3 X 3 Laplacian operator looking for a central peak
surrounded by a valley. The value of the central weight can be adjusted to
increase the contrast required between the peak and the valley. For example,

-1 -1 -1
=-1 7 -l
-1 -1 -1 '

PIPELINED IMAGE-PROCESSING ENGINE i

The output of this operator is thresholded, giving a set of peak spot valu
(1’s) and a background of nonspot values (0’s). The thresholded spot imag
is stored in the alternate buffer of MPS stage k.

By applying the spot detector to a low-resolution version of the imag
responses to spots smaller than the desired size have been minimized, and
global operation has been made local. The pyramid does not, howeve
prevent the spot detector from responding to spots larger than the desired siz
To ensure that this is accomplished, a second neighborhood operation, F,
applied to the output of the spot detector S. F ensures that a spot has no mol
than some maximum number, n, of neighbors that are also spots.

-1 -1 -1
F=-1 n -1
-1 -1 -1

Here a spot detector is being applied to the thresholded output of the origin:
spot detector. If desired, the same spot detector can be applied in both case:

The output of the operator F, is stored in the alternate buffer of the sam
stage via the recursive pathway. The original (reduced-resolution) image i
still in its buffer, unaltered by the processing. The next step is to compute
threshold to be applied to the original, full-resolution image in the regio
corresponding to each spot. This is achieved using yet another neighborhoo
operation. This time, however, the operator is applied only at pixels desig
nated by the region-of-interest operator. The operator, G, is applied to th
gray-scale image, using the output of the spot detector as the template for th

region of interest. The result of applying G is then divided by 16 to provid
the desired threshold for each region.

1
1
1

G =

o OO e

The thresholds are stored in the pixels corresponding to the regions to whic
they are to be applied. The threshold resulting from applying the abov
sequence of operations is the average of the gray value at the center of eac
detected spot and the mean of its eight neighbors. This was found to give goo
results [10].

Now that local thresholds have been found for each spot, it remains t
project the values down the pyramid to cover the corresponding regions, an
to apply the thresholds to the original image. Projecting the thresholds dow
the pyramid involves simply duplicating each pixel of the low-resolutio
image into a2 X 2 block of identical pixels at the next-higher resolution. Thi
1s a function provided by PIPE’s retrograde pathway in the pyramid mode

74 KENT, SHNEIER, AND LUMIA

The final step of thresholding is done by comparing the original image with
the projected image of thresholds on a pixel-by-pixel basis. This operation
uses PIPE’s logic for combining inputs to a stage, and results in an image that
has 1’s for points within regions of the desired size, and 0’s elsewhere.

5. DISCUSSION

PIPE is designed as a front-end processor for low-level iconic-to-iconic
image processing. It is intended to perform transformations on images to
extract features similar to those in the primal sketch of Marr [7]. These
features make intensity changes and local geometric relations explicit in
images, while maintaining the spatial representation. In this, PIPE differs
from many processors designed for image processing. These other processors
are usually designed to perform both local and global image-processing tasks,
often in an interactive environment.

PUMPS (2] is an example of a multiuser system in which various task-
processing units are allocated from a pool. Each processor is specialized for
a particular purpose, and images are transformed by passing them through a
sequence of different processors. PIPE, on the other hand, consists of a
sequence of identical stages, each of which has the power to perform several
different operations on images. The programmer has the responsibility of
specifying the task of each stage to ensure that the desired goal is attained.
PIPE is also dedicated to a single user, although pipelines are easily construc-
ted from a set of identical components, allowing each user to have a specially
tailored PIPE system. In fact, a set of PIPE processors could be added to the
pool of available processors in PUMPS, and used as a resource in the same
way as the other processors.

Several other systems have components that perform some of the functions
of PIPE. Usually, however, they operate on a single image at a time. For
instance, the PICAP II system [1] has a filter processor, FIP, that performs
some of the operations of a stage in PIPE. It also has other processors that are
specialized for operations such as image segmentation. FLIP [6] is similar to
PIPE in that it has a number of identical processors, but it usuaily uses these
processors in parallel on subimages of the same image instead of on succes-
sive versions of complete images. FLIP also allows greater flexibility in the
connections between its processors. In PIPE, processors are normally con-
nected only to their immediate predecessors and successors, although the
wildcard buses allow selective but limited connections between arbitrary
stages. FLIP, on the other hand, provides connections between all processors,
allowing the processors to be arranged to suit each particular task.

Other special processors for image processing include the massively paral-
lel processor, MPP [8], and ZMOB {5], which is a more general parallel
processor but has been studied extensively with regard to its abilities to

PIPELINED IMAGE-PROCESSING ENGINE 75

perform image-processing tasks. MPP has 16K processors, and is a true
parallel processor. Experience with the processor is limited, but a major
difficulty appears to be the problem of transferring the data to each individual
processor, and getting the results out of the machine. MPP does not have a
true neighborhood operator, although each processor can be connected to four
of its neighbors and use the pixel values there to compute its result. It is not
clear that MPP has any advantage over pipelined systems, because images are
usually obtained from an imaging system or storage medium in a stream, and
sent to successive processors in the same fashion.

ZMOB consists of 256 processors connected by a ring-shaped high-speed
communications system. The communications link operates fast enough to
make each processor appear to be connected to all others. Each processor is
a general-purpose 8-bit microcomputer, with 64K bytes of memory. Thus,
many different computations can be performed at the same time, either on the
same or on different data. For image-processing applications, images are
usually broken into parts, each of which is sent to a different processor. Many
operations require interactions between the parts, especially when neigh-
borhood operations are performed. This gives rise to the need for commu-
nications between processors. Given that the communications link is much
faster than the processors’ cycle time, there is very little overhead involved.
But upgrading the processors might cause data transmissions to become
significant. While PIPE is clearly less powerful than ZMOB, it is better suited
to its role of low-level image processing.

A recent survey by Reeves [9] divided image-processing tasks into two
classes. Low-level image processing usually modifies parts of images, but
maintains the image array. Higher-level processing, however, works on sym-
bolic representations of the contents of images. Low-level processing has
usually given rise to architectures based on single-instruction stream,
multiple-data stream (SIMD) structures. The higher-level functions are usu-
ally carried out using processors based on multiple-instruction stream,
multiple-data stream (MIMD) structures. The design of PIPE allows it to act
as a SIMD pipeline, or as a (restricted) MIMD pipeline. The MIMD mode is
entered whenever the region-of-interest operators are used. The limitations on
these operators are that there are at most 256 different operators available per
stage, and that using the region of interest generally precludes using some
other operators, such as the functions of two arguments. Using the retrograde
pathway to insert expectations into the image analysis process also blurs the
distinction between high-level and low-level processes.

A processor that has many features in common with PIPE is the cyto-
computer [11]. This machine performs neighborhood and table-lookup oper-
ations, but lacks most of the other features of PIPE. It does not have the
retrograde or recursive data paths, has no region-of-interest operators, and
cannot perform multiresolution image processing. Neither can it combine
more than one image in an operation. Even without these features, however,

76 KENT, SHNEIER, AND LUMIA

the cytocomputer has shown itself to be extremely useful for low-level image
processing.

While several theoretical designs have been proposed for hierarchical (pyr-
amid) processors (e.g., [4, 13]), there is apparently only one that has actually
been constructed {12.]. This is a SIMD machine consisting of a pyramidal
array of processing elements connected to a general-purpose computer. Each
processing element connects to 13 other elements, comprising its eight neigh-
bors at the same pyramid level, its four children at the level below, and its
parent at the level above. Neighborhood operations can be performed on this
set of elements, as well as pointwise operations and image input and output.
Tanimoto presents a number of algorithms that take advantage of the pyramid
structure to perform common image-processing operations. The pyramid
processor has an advantage over PIPE in the explicit links to its children. To
achieve the same result with PIPE requires complex manipulations using the
region-of-interest operator and a bit map of four values (one for each child)
in the alternate buffer. PIPE, however, can be reconfigured to produce over-
lapped pyramids, using larger neighborhoods, and is not restricted to
pyramid-based operations.

6. FUTURE ENHANCEMENTS

The neighborhood operators in PIPE all reside on separate boards. This is
intended to facilitate changes to the stages as faster neighborhood operator
chips become available that can handle larger neighborhoods in the required
time. With current technology, a 5 X 5 neighborhood would be easily at-
tainable at slightly greater cost per stage.

Investigations will also be pursued into producing a VLSI chip to perform
the operations of an individual MPS. Since most of these operations are useful
for general-purpose preprocessing of images, such chips should provide the
ability to construct pipelines using off-the-shelf components. This should
simplify the construction of special-purpose real-time image processors.

For our application, in which the camera is mounted on a mobile arm, the
256 X 256 image size is adequate, but this is not necessarily true in all
applications. There is no fundamental feature of PIPE’s design which limits
image size. A version of PIPE which can handie 512 X 512 images is already
under design, and extensions to 2048 X 2048 are contemplated.

It is also planned to enhance the capabilities of PIPE by adding pre- and
postprocessors. A processor will be inserted before the input stage to perform
conformal mappings. This will, for example, allow rotations in the image
plane and range changes (image scaling) to be converted to image trans-
lations. The image-differencing and motion-detection abilities of PIPE will
then simplify analysis of the changes. .

At the output end of PIPE, another processor will convert image data to
symbolic data (the iconic-to-symbolic mapper, or ISMAP). This processor

PIPELINED IMAGE-PROCESSING ENGINE 77

can collect information about the locations of all features of a particular kind
and present it to the host as a unit. It will also be able to histogram images
and reduce the amount of data to be handled by the host processor to more
manageable levels.

7. CONCLUSIONS

This paper has described a new image preprocessor, consisting of a se-
quence of identical stages, each of which can perform a number of point and
neighborhood operations. An important feature of the processor is the pro-
vision of forward, recursive, and backward paths to allow image data to
participate in temporal as well as spatial neighborhood operations. The back-
ward pathway also allows expectations or image models to be inserted into
the system by the host, and to participate in the processing in the same way
as images acquired from the input device. The region-of-interest operator is
also a powerful, and unique, feature of PIPE, allowing the results of feature-
extraction processes to guide further image analysis. PIPE also provides a
multiresolution capability, enabling global events to be made local. This is
important in a machine that has only local operators. Much research needs to
be done to explore the capabilities of the system, but early experiments
indicate that the system will have a wide range of applications in low-level
real-time image processing.

REFERENCES

1. Antonsson, D., Gudmundsson, B., Hedblom, T., Kruse, B., Linge, A., Lord, P., and
Ohlsson, T. PICAP—A system aproach to image processing. IEEE Trans. Compus. C-31,
10 (Oct. 1982), 997-1000.

2. Briggs, F. A, Fu, K. S., Hwang, K., and Wah, B. W. PUMPS architecture for pattern
analysis and image database management. JEEE Trans. Comput. C-31, 10 (Oct. 1982),
969-983.

3. Burt, P. J. Fast hierarchical correlations with Gaussian-like kemels. Proc. Fifth Inter-
national Joint Conference on Pattern Recognition, Miami, Fla., 1980.

4. Dyer, C. R. A quadtree machine for parallel image processing. Knowledge Systems
Laboratory Tech. Rep. KSL 51, University of lllinois at Chicago Circle, 1981.

5. Kushner, T., Wu, A. Y., and Rosenfeld, A. Image processing on ZMOB. IEEE Trans.
Comput. C-31, 10 (Oct. 1982), 943-951.

6. Luetjen, K., Gemmar, P., and Ischen, H. FLIP: A flexible multi-processor system for
image processing. Proc. Fifth International Conference on Pattern Recognition, Miami,
Fla., 1980.

7. Marr, D. Barly processing of visual information. Philos. Trans. Roy. Soc. London Ser. B
275 (1976)

8. Potter, J. L. Image processing on the Massively Parallel Processor. IEEE Comput. Mag.
16, 1 (Jan. 1983), 62-67.

9. Reeves, A. P. Parallel computer architectures for image processing. Computer Vision,
Graphics, and Image Processing 25 (1984), 68—88.

78

10.
1.

12.

KENT, SHNEIER, AND LUMIA

Shneier, M. Using pyramids to define local thresholds for blob detection. IEEE Trans.
Puitern Analysis and Machine Intelligence PAMI-5, 3 (May 1983), 345-349.
Stemberg, S. R. Parallel architectures for image processing. Proc. 3rd International IEEE
COMPSAC, Chicago, 1979, pp. 712-717.

Tanimoto, S. L. Sorting, histogramming, and other statistical operations on a pyramid
machine. In Rosenfeld, A. (Ed.), Muliiresolution Image Processing and Analysis.
Springer-Verlag, Berlin, 1984.

. Uhr, L., Thompson, M., and Lockey, J. A 2-layered SIMD/MIMD parallel pyramidal

array/vet. IEEE Workshop on Computer Architecture for Pattern Analysis and Image
Database Management, Hot Springs, Va., Nov. 1981, pp. 31-34.

